Geomorphic constraints on listric thrust faulting: Implications for active deformation in the Mackenzie Basin, South Island, New Zealand
نویسندگان
چکیده
[1] Deformed fluvial terraces preserved over active thrust-related folds record the kinematics of folding as fault slip accumulates on the underlying thrust. In the Mackenzie Basin of southern New Zealand, the kinematics revealed by folded fluvial terraces along the active Ostler and Irishman Creek fault zones are inconsistent with traditional models for thrust-related folding in which spatially uniform rock uplift typically occurs over planar fault ramps. Instead, warped and tilted terraces in the Mackenzie are characterized by broad, continuous backlimbs and abrupt forelimbs and suggest folding through progressive limb rotation. By relating this pattern of surface deformation to the underlying thrust with a newly developed, simple geometric and kinematic model, we interpret both faults as listric thrusts rooted at depth into gently dipping planar fault ramps. Constraints on the model from detailed topographic surveying of deformed terraces, ground-penetrating radar over active fault scarps, and luminescence dating of terrace surfaces suggest slip rates for the Ostler and Irishman Creek faults of 1.1– 1.7 mm/yr and 0.5–0.7 mm/yr, respectively. The predicted depth of listric faulting for the Ostler fault (0.7 0.2 +0.1 km) and the Irishman Creek fault (1.3 0.5 +0.1 km) generally agrees with geophysical estimates of basin depth in the Mackenzie and suggests control of preexisting basin architecture on the geometry of active thrusting. Despite the potential effects of changes in fault curvature and hanging wall internal deformation, the methodology presented here provides a simple tool for approximating the kinematics of surface deformation associated with slip along listric, or curviplanar, thrust faults.
منابع مشابه
Structural concepts for Soltanieh fault zone (NW Iran)
Active deformation in Alborz range is due to N-S convergence between Arabia and Eurasia. This paper provides geomorphic traces of regional deformation in NW Iran in order to characterize active faulting on major faults. Soltanieh and North Zanjan fault systems are involved in convergence boundary extent between South Caspian Basin and Central Iran. Soltanieh and North Zanjan faults are major re...
متن کاملPartitioning of intermontane basins by thrust - related folding , Tien Shan , Kyrgyzstan
Well-preserved, actively deforming folds in the Tien Shan of Kyrgyzstan provide a natural laboratory for the study of the evolution of thrust-related folds. The uplifted limbs of these folds comprise weakly indurated Cenozoic strata that mantle well-lithified Palaeozoic bedrock. Their contact is a regionally extensive unconformity that provides a persistent and readily traceable marker horizon....
متن کاملMagnetostratigraphyof theNeogeneChakabasinand its implications formountainbuildingprocesses in the north-easternTibetan Plateau
Magnetostratigraphy of sedimentary rock deposited in the Chaka basin (north-easternTibetan Plateau) indicates a lateMiocene onset of basin formation and subsequent development of the adjacent Qinghai Nan Shan. Sedimentation in the basin initiated at 11Ma. In the lower part of the basin ¢ll, a coarsening-upward sequence starting at 9Ma, as well as rapid sedimentation rates, and northward paleocu...
متن کاملMesozoic basin inversion in Central Alborz, evidence from the evolution of Taleqan-Gajereh-Lar paleograben
This paper presents evidence on Mesozoic inversion of basin bounding faults within the Taleqan-Gajereh-Lar Paleograben (TGLP) in Central Alborz Range. For this purpose, well documented stratigraphy data across the TGLP together with the new acquired structural data on the geometry and kinematics of the paleograben basin bounding faults are utilized. The TGLP has evolved through the Early and Mi...
متن کاملGeomorphic and structural assessment of active tectonics in NW Alborz
Alborz Mountains is a region of active deformation within Arabia-Eurasia collision zone. The study fault system in western Alborz comprises abundant evidence of active faulting accompanied by occurrence of historical earthquakes. Active tectonics of Manjil-Rudbar fault zone whose movement caused destructive 1990 Manjil-Rudbar earthquake was concentrated in this article through geomorphic and st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002